Ich will alles wissen

Gewichteter Durchschnitt

Vkontakte
Pinterest




Es ist bekannt als Durchschnitt zum Figur das ergibt identisch oder was ist das am nächsten zum arithmetisches Mittel . Der Durchschnitt kann auch der Punkt sein, an dem eine Sache in die Mitte geteilt wird.

Der Begriff von gewichteter Durchschnitt wird verwendet, um a zu benennen Berechnungsmethode Dies wird angewendet, wenn einer von ihnen innerhalb einer Reihe von Daten a große Bedeutung . Es gibt also eine Tatsache mit größerem gewicht als der Rest Der gewichtete Durchschnitt besteht aus der Ermittlung des Gewichts, auch bekannt als Gewichtung Verwenden Sie diesen Wert, um den Durchschnitt zu berechnen.

Mit dieser Klarheit können wir verstehen, wie der gewichtete Durchschnitt berechnet wird. Zuerst müssen wir jedes multiplizieren Daten durch ihre Gewichtung und addieren Sie diese Werte. Schließlich müssen wir diese Summe durch die Summe aller Gewichte dividieren.

Die häufigste Verwendung dieser Berechnung ist an bestimmte gebunden Bewertungen . Nehmen wir an, ein bestimmtes zu vervollständigen natürlich muss ein Student fünf aktuelle Prüfungen und eine Abschlussprüfung ablegen, die den anderen fünf Prüfungen entspricht. Das heißt, wenn jede aktuelle Prüfung eine Gewichtung von hat 1 Die Abschlussprüfung hat eine Gewichtung von 5 .

Der betreffende Student erhält folgende Noten: 6 , 7 , 5 , 7 und 8 in den aktuellen Prüfungen und 6 in der Abschlussprüfung. Appell an die Formel Wie bereits erwähnt, entspricht der gewichtete Durchschnitt der Noten dieses Schülers der Summe jeder Note multipliziert mit ihrer Gewichtung (6 x 1 + 7 x 1 + 5 x 1 + 7 x 1 + 8 x 1 + 6 x 5 = 63 ) dividiert durch die Summe aller Gewichte (1 + 1 + 1 + 1 + 1 + 5 = 10 ). Der gewichtete Durchschnitt in diesem Fall ist daher 6,3 .

Die Wichtigkeit des gewichteten Durchschnitts mag nicht offensichtlich sein, im Gegenteil, es ist a Technik sehr nützlich und das kann einen erheblichen Unterschied bei der Berechnung des normalen Durchschnitts ausmachen. Kehren wir zu dem im vorherigen Absatz beschriebenen Beispiel zurück, das eine der häufigsten Anwendungen des gewichteten Durchschnitts im Leben von Universitätsstudenten widerspiegelt Was würde passieren, wenn das Gewicht der einzelnen Daten nicht berücksichtigt würde? : Wenn wir die sechs Noten einfach addieren und durch sechs teilen, erhalten wir ein Ergebnis von 6,5.

Zwischen 6.3 und 6.5 mag der Unterschied unbedeutend erscheinen, aber dasselbe würde nicht passieren, wenn die Mindestqualifikation für das Bestehen die letztere wäre. In einem solchen Fall würde ein falsches Vorgehen zur Berechnung des Durchschnitts (dh durch Übersehen des Gewichts der einzelnen Daten und einfaches Durchführen des Durchschnitts) den Schüler zu der Annahme verleiten, dass er die Prüfung erfolgreich bestanden hat, obwohl dies nicht der Fall ist. Wenn die letzte Prüfung umfangreicher war und ein viermal größeres Gewicht hatte (20), die Entfernung zwischen den beiden Ergebnisse es wäre wirklich beträchtlich, da der gewichtete Durchschnitt 4,65 ergeben würde.

Welchen Vorteil bietet ein Lehrer, wenn er eine Reihe von Bewertungen erstellt, die Existenz des gewichteten Durchschnitts? Könnten Sie Ihre Schüler in denselben Fächern untersuchen, wenn Sie diese Technik zur Berechnung ihrer Noten nicht hätten? Der Hauptnutzen ist die Möglichkeit von Gruppe mehr als ein Thema oder Unterthema in der gleichen Bewertung und erhöhen folglich seine Bedeutung in der Gesamtsequenz. Wenn der gewichtete Durchschnitt nicht vorhanden wäre, hätten die Lehrer zwei mögliche Wege:

* führen Sie viel mehr Prüfungen durch, so dass jede von ihnen die gleiche Wichtigkeit (das gleiche Gewicht) wie die anderen hatte und es möglich war, den Notendurchschnitt nach der traditionellen Methode zu berechnen;

* ungerecht oder uneinheitlich beurteilen Schülerleistung, gleiches Gewicht zu geben Prüfungen die sehr unterschiedliche Nachfragegrade haben.

Vkontakte
Pinterest